Skip to main content
Log in

On the role of abiogenic factors in the bioaccumulation of heavy metals by the hydrothermal fauna of the Mid-Atlantic Ridge

  • Marine Chemistry
  • Published:
Oceanology Aims and scope

Abstract

The distributions of Fe, Mn, Zn, Cu, Ni, Co, Cr, Pb, As, Ag, Cd, Se, Sb, and Hg in 128 samples of tissues of the organisms that inhabit hydrothermal vent fields of the Mid-Atlantic Ridge (Menez Gwen, Snake Pit, and Rainbow) depending on the abiotic environmental parameters were studied. The majority of the elements studied showed direct correlations between their concentrations in the fluids released and in the tissues of hydrothermal organisms. A higher degree of bioaccumulation of metals was revealed in the Bathymodiolus mussels and Rimicaris shrimps from the Rainbow hydrothermal vent field as compared to their analogues from Menez Gwen and Snake Pit. This corresponds to the maximum concentrations of the majority of the metals studied in the Rainbow high-temperature hydrothermal fluids. The highest degree of bioaccumulation of heavy metals was found in gills of the symbiotrophic mussels Bathymodiolus and in maxillipeds of the ectosymbiotic shrimps Rimicaris, i.e., in the organs that function in dependence on chemosynthetic bacteria. Within the Rainbow vent field, the shrimps, which inhabit in biotopes with more high-temperature conditions and therefore are more strongly subjected to the influence of fluids, were found to contain higher metal contents than mollusks. The Fe-Mn hydroxide films that cover mussel shells might serve as important reservoirs of other metals related to Fe and Mn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Aleinik, V. N. Lukashin, A. Yu. Lein, et al., “Water Structure in the Rainbow Rift Valley and Hydrothermal Plume,” Okeanologiya 41(5), 660–673 (2001) [Oceanology 41 (5), 629–641 (2001)].

    Google Scholar 

  2. Yu. A. Bogdanov, Hydrothermal Manifestations in the Rifts of the Mid-Atlantic Ridge (Nauchnyi Mir, Moscow, 1997) [in Russian].

    Google Scholar 

  3. Yu. A. Bogdanov, “Geological Prerequisites for the Differences in the Hydrothermal Faunas of the Atlantic Ocean,” in Ecosystems of Atlantic Hydrotherms (Nauka, Moscow, 2006), pp. 19–36 [in Russian].

    Google Scholar 

  4. S. V. Galkin, Hydrothermal Communities of the World Ocean (GEOS, Moscow, 2002) [in Russian].

    Google Scholar 

  5. S. V. Galkin, “Spatial Structure of Hydrothermal Communities,” in Ecosystems of Atlantic Hydrotherms (Nauka, Moscow, 2006), pp. 163–204 [in Russian].

    Google Scholar 

  6. V. F. Gal’chenko, A. Yu. Lein, E. M. Galimov, et al., “Role of Symbiotic Bacteria in the Feeding of Invertebrates in the Regions of Active Underwater Hydrotherms,” Okeanologiya 28(6), 1020–1031 (1988).

    Google Scholar 

  7. L. L. Demina and S. V. Galkin, “Bioaccumulation of Microelements by Bottom Communities it Hydrothermal Fields of the Mid-Atlantic Ridge,” in Geochemistry of the Biosphere. Reports to the International Scientific Conference of the 90th Birthday of A.I. Perel’man, Smolensk (MGU-IGEM) (Oikumena, Moscow, 2006), pp. 118–119 [in Russian].

    Google Scholar 

  8. L. L. Demina, S. V. Galkin, A. Yu. Lein, et al., “First Data about the Composition of Microelements in the Benthic Organisms from the 9°50′N Hydrothermal Field (East Pacific Rise),” Dokl. Akad. Nauk 415(4), 528–531 (2007).

    Google Scholar 

  9. A. Yu. Lein, E. M. Sedykh, N. P. Starshinova, et al., “Metal Distribution in Bacteria and Animals of Underwater Hydrothermal Fields,” Geokhimiya, No. 2, 297–303 (1989).

  10. A. Yu. Lein, “Geochemistry and Biogeochemistry of Hydrothermal Fluids,” in Ecosystems of Atlantic Hydrotherms (Nauka, Moscow, 2006), pp. 68–94 [in Russian].

    Google Scholar 

  11. A. P. Lisitsyn, “Hydrothermal Systems of the World Ocean: Endogenic Matter Supply,” in Hydrothermal Systems and Sedimentary Formations of the Atlantic Mid- Ocean Ridges (Nauka, Moscow, 1993), pp. 147–246 [in Russian].

    Google Scholar 

  12. V. N. Lukashin, S. V. Galkin, and A. Yu. Lein, “Features of the Chemical Composition of the Animals of a Deep- Water Hydrotherm,” Geokhimiya, No. 2, 279–285 (1990).

  13. A. C. Campbell, J. M. Gieskes, J. I. Lupton, et al., “Manganese Geochemistry in the Guaymas Basin, Gulf of California,” Geochim. Cosmochim. Acta 52(2), 345–357 (1988).

    Article  Google Scholar 

  14. J. L. Charlou, J. P. Donval, E. Douville, et al., “Compared Geochemical Signatures and the Evolution of Menez Gwen (37°50′N) and Lucky Strike (37°17′N) Hydrothermal Fluids, South of the Azores Triple Junction on the Mid-Atlantic Ridge,” Chem. Geol. 171, 49–75 (2000).

    Article  Google Scholar 

  15. J. J. Childress and C. R. Fisher, “The Biology of Hydrothermal Vent Animals: Physiology, Biochemistry, and Autotrophic Symbioses,” Oceanogr. Mar. Biol 30, 337–441 (1992).

    Google Scholar 

  16. A. Colaso, P. Bustamante, Y. Fouquet, et al., “Bioaccumulation of Hg, Cu, and Zn in the Azores Triple Junction Hydrothermal Vent Feed Food Web,” Chemosphere 65(11), 2260–2267 (2006).

    Article  Google Scholar 

  17. R. M. Daniel, “Modern Life at High Temperatures,” in Origin of Life and Evolution of Biosphere. J. of Int. Society of the Study of the Origin of Life. Spec. Issue 22, (1992), pp. 33–43.

  18. D. Desbruyeres, A. Almeida, M. Biscoito, et al., “A Review of the Distribution of Hydrothermal Vent Communities Along the Northern Mid-Atlantic Ridge: Dispersal vs. Environmental Controls,” Hydrobiologia 440, 201–216 (2000).

    Article  Google Scholar 

  19. E. Douville, J. L. Charlou, E. H. Oelkers, et al., “The Rainbow Vent Fluids (36°14′ N, MAR): The Influence of Ultramaphic Rocks and Phase Separation on Trace Metals Content in Mid-Atlantic Ridge Hydrothermal Fluids,” Chem. Geol. 184(1), 37–48 (2002).

    Article  Google Scholar 

  20. C. R. German and K. L. Von Damm, “Hydrothermal Processes,” in Treatise on Geochemistry. V. 6. Oceans and Marine Geochemistry, Ed. by H. D. Holland and K. K. Turekian, (Elsevier, Pergamon, 2004), pp. 182–216.

    Google Scholar 

  21. P. R. Hessler, W. M. Smithey, and C. H. Keller, “Spatial and Temporal Variation of Giant Clams, Tube Worms, and Mussels of Deep-Sea Hydrothermal Vents,” Bull. Biol. Soc. of Washington 6, 411–428 (1985).

    Google Scholar 

  22. H. W. Jannasch and G. O. Wirsen, “Chemosynthetic Primary Production at East Pacific Sea Floor Spreading Centers,” BioScience 79, 592–598 (1979).

    Article  Google Scholar 

  23. E. Kadar, V. Costa, I. Martins, et al., “Enrichment in Trace Metals (Al, Mn, Co, Cu, Mo, Cd, Fe, Zn, Pb, and Hg) of the Macro-Invertebrate Habitats at Hydrothermal Vents Along the Mid-Atlantic Ridge,” Hydrobiologia 548, 191–205 (2005).

    Article  Google Scholar 

  24. E. Kádár, V. Costa, R. S. Santos, et al., “Tissue Partitioning of Micro-Essential Metals in the Vent Bivalve Bathymodiolus azoricus and Associated Organisms (Endosymbiont Bacteria and a Parasite Polychaete) from Geochemically Distinct Vents of the Mid-Atlantic Ridge,” J. of Sea Research 56, 45–52 (2006).

    Article  Google Scholar 

  25. E. Kádár, V. Costa, and R. S. Santos, “Distribution of Micro-Essential (Fe, Cu, Zn) and Toxic (Hg) Metals in Tissues of Two Nutritionally Distinct Hydrothermal Shrimps,” Science of the Total Environment 358, 143–150 (2006).

    Article  Google Scholar 

  26. W. J. Langston, “Metals in Sediments and Benthic Organisms in the Mersey Estuary,” Estuarine Coastal Shelf Science 23, 239–256 (1986).

    Article  Google Scholar 

  27. I. Martins, V. Costa, F. Porteiro, et al., “Mercury Concentrations in Invertebrates from Mid-Atlantic Ridge Hydrothermal Vent Fields,” J. Mar. Biol. Assoc. UK 81(6), 913–915 (2001).

    Google Scholar 

  28. G. Roesijadi and E. A. Crecelius, “Elemental Composition of the Hydrothermal Vent Clam Calyptogena magnifica from the East Pacific Rise,” Mar. Biol. 83(2), 155–161 (1984).

    Article  Google Scholar 

  29. P. A. Rona, “Hydrothermal Mineralization at Seafloor Spreading Centers,” Earth-Sci. Rev 20, 1–104 (1984).

    Article  Google Scholar 

  30. N. Rousse, J. Boulegue, R. Cosson, et al., “Bioaccumulation des Metuax Chez le Mytilidae Bathymodiolus sp. de la Ride Medio-Atlantique,” Oceanol. Acta 21(4), 597–607 (1998).

    Article  Google Scholar 

  31. P.-M. Sarradin, J.-C. Caprais, R. Riso, et al., “Chemical Environment of the Hydrothermal Mussel Communities in the Lucky Strike and Menez Gwen Vent Fields, Mid Anlantic Ridge,” Cah. Biol. Mar. 40, 93–104 (1999).

    Google Scholar 

  32. D. R. Smith and A. R. Flegal, “Elemental Concentrations of Hydrothermal Vent Organisms from the Galapagos Rift,” Mar. Biol. 102, 127–133 (1989).

    Article  Google Scholar 

  33. S. B. Tambiev and L. L. Demina, “Biogeochemistry and Fluxes of Manganese and Some Other Metals in the Regions of Hydrothermal Activity (Axial Mountain, Juan de Fuca Ridge, and Guaymas Basin, Gulf of California),” Deep-Sea Res. 39(3/4), 687–703 (1992).

    Article  Google Scholar 

  34. B. M. Tebo, B. G. Bargar, G. J. Clement, et al., “Biogenic Manganese Oxides: Properties and Mechanisms of Formation,” Annu. Rev. Earth Planet Sci. 32, 287–328 (2004).

    Article  Google Scholar 

  35. K. L. Von Damm, “Seafloor Hydrothermal Activity: Black Smoker Chemistry and Chimneys,” Annu. Rev. Earth and Planet. Sci. 18, 173–204 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Demina.

Additional information

Original Russian Text © L.L. Demina, S.V. Galkin, 2008, published in Okeanologiya, 2008, Vol. 48, No. 6, pp. 847–860.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demina, L.L., Galkin, S.V. On the role of abiogenic factors in the bioaccumulation of heavy metals by the hydrothermal fauna of the Mid-Atlantic Ridge. Oceanology 48, 784–797 (2008). https://doi.org/10.1134/S0001437008060040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437008060040

Keywords

Navigation